The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^2 - 2*x1 + 1 1 x1 - 1] [0 1 1 x1^3 0 0 1 x1 - 1 x1^3 x1 x1^2 - x1] [0 0 0 0 1 1 1 -x1 -x1^3 + x1^2 -x1 + 1 -x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (4*x1^12 - 18*x1^11 + 38*x1^10 - 55*x1^9 + 62*x1^8 - 51*x1^7 + 27*x1^6 - 8*x1^5 + x1^4) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^2 + x1 - 1, x1^4 - x1^3 + 4*x1^2 - 4*x1 + 1, x1^4 + 2*x1^2 - 3*x1 + 1, x1^3 - x1^2 + 2*x1 - 1, x1^4 - 2*x1^3 + 5*x1^2 - 4*x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, x1^4 - x1^3 + 3*x1^2 - 3*x1 + 1]